becomes $1 / N^{\mathrm{a}} \int_{0}^{\varphi_{\max .}} \in \delta \mathrm{d} \varphi$. This is clearly inadequate, as it omits the contribution from the internal energy change of the fluid in passing from the free to the adsorbed (compressed) state, which will (below the critical point) include the heat of vaporization.

Summary

The phenomenology and thermodynamic theory of adsorption systems are generalized and made applicable to the entire range of conditions within which the adsorbed substance normally exists as
a fluid. Special attention is devoted to the corrections required when experiments are performed at high pressures. The conclusion is reached that several different methods of defining adsorption (all equivalent at low pressures) can advantageously be adopted, according to the purpose in hand. The consequences of adopting each of these definitions are followed in some detail, and illustrated, in the absence of suitable experimental material, by computations based upon the Polanyi theory.
Cambridge, Mass. Received October 13, 1933

[Contribution from the Chemical Laboratory of Harvard University]

Adsorption at High Pressures. II

By Albert Sprague Coolidge and Holmes J. Fornwalt

Introduction

In order to provide experimental material illustrating the application of the ideas developed in the previous paper, we undertook to investigate the adsorption equilibrium between charcoal and several gases over a range of temperature and pressure extending both lower and higher than their critical regions. By working up to 100° and 100 atmospheres, we could accomplish this with carbon dioxide (critical point $31^{\circ}, 73 \mathrm{~atm}$.), nitrous oxide (c. p. $36.5^{\circ}, 72 \mathrm{~atm}$.) and silicon tetrafluoride (c. p. $-1.5^{\circ}, 50 \mathrm{~atm}$.).

Materials and Apparatus

The chareoal used was a steam-activated coconut charcoal obtained from the National Carbon Company. The particles passed a 10 - but not a 20 -mesh sieve. In order to provide a basis for estimating the "skeleton" volume and the "pore" volume, we determined the apparent density by simple displacement (with boiling to expel gases) in several liquids, with the following results:

Liquid	Density	Specific volume
Mercury	0.629	1.590
Benzene	2.06	0.485
Ether	2.12	.472
(Graphite)	(2.25)	$(.444)$

We also determined an adsorption isotherm with benzene vapor at 20° as follows.
$\begin{array}{lllllll}\text { Pressure, min. } & 13.5 & 20.5 & 39.5 & 50.0 & 70.5 & 74.0\end{array}$ Cc. ads. perg. $\quad 181.4196 .6208 .8215 .5231 .8234 .5$

Upon extrapolating the isothern to the saturation pressure of liquid benzenc, we obtain 236 cc . of benzene vapor (measured at N. T. P.) as the maximum taken up by one grati of our chancont.

The carbon dioxide was the last half of the contents of a commercial cylinder, and was used without special treatment to remove impurities, as the coincidence of adsorption and desorption points on a given isotherm seemed to prove that no significant amounts of foreign substances were present. The silicon tetrafluoride was prepared substantially by the method described by Booth and Germann, ${ }^{1}$ in which the gas is generated by strongly heating barium fluosilicate, passed through a carbon dioxide cold trap and through glass wool and phosphorus pentoxide to remove water and hydrofluoric acid, and purified by distillation. Before use, each sample was condensed with liquid air and pumped. The density of the gas was carefully determined in a balloon, two runs giving 4.674 and 4.675 g. per liter at N. T. P. Nitrous oxide was taken from a cylinder. The density of the gas drawn from the top of the cylinder in the ordinary way was found too low; but when the cylinder was inverted the evaporated liquid possessed a normal density of 1.976 , corresponding to 99.7% pure nitrous oxide, which was considered satisfactory.

The measurements were carried out with a quartz spring balance, from which the glass bucket containing the charcoal depended by a long platinum wire. The whole was housed in a nickel-silver tube, closed at the bottom, of sufficient length so that the upper part, enclosing the spring, did not change perceptibly in tenıperature during the necessary heating and cooling of the charcoal below. The movements of the spring were followed with a cathetometer through windows of plate glass, set with Wood's metal into a square steel block, which served as a union into which were screwed the lower and upper parts of the nickel-silver tube, as well as the connections to pump, gage and gas supply. Pressures up to 5 atmospheres were read on a mercury column. Above 5 atm . a deadweight gage was at first used. Later, a large Bourdon gage was obtained, and by occasional comparison with the dead-weight gage was found satisfactory as to accuracy

[^0]and sensitiveness, while far more convenient than the former. Indeed, the work with silicon tetrafluoride was greatly expedited by the use of the Bourdon gage, for the large amount of gas required to fill the dead-weight gage at a pressure of 100 atm ., and the constant slow leakage

Fig. 1.-The effect of various pore volumes on the 30° adsorption isotherm of carbon dioxide as expressed by definition A.
with consequent change of pressure, would have greatly complicated the procedure. With the other gases, available in copious quantities at constant pressure in the tanks, the matter was less serious.
mined without preliminary evacuation. In the case of silicon tetrafluoride, the procedure was modified, in that the -5 and 0° isotherms and the 25,50 and 100° isotherms were determined simultaneously, each charge being brought in succession to each of the two or three temperatures mentioned before the withdrawal of a further portion.

Computation and Presentation of Results

At low pressures, the quantity of substance adsorbed, in mg. per g. of charcoal, was obtained simply by multiplying the observed spring extension by the appropriate constant. At higher pressures it was necessary to apply a correction for the buoyant action of the fluid on the moving system. To determine this, we ran series of blank experiments, in which all conditions were duplicated except that bucket and charcoal were replaced by a small weighted glass bulb. Particu lar care was exercised that if any great difference existed in the density of the fluid between bottom and top of the tube, the dividing meniscus or transition region should be formed along the length of the fine suspension wire. The correction was then the sum of two terms, the main term being the product of the volume of the bucket or bulb by the density of fluid in the lower part of the tube, while a small contribution came

Fig. 2.-Carbon dioxide isotherms, definition A.

The first step in any determination was to outgas the charcoal for five or six hours at 550°, with the aid of a diffusion pump, which was kept operating during the subsequent cooling. The charcoal was then saturated with the substance under investigation (or charged to the maximum pressure, when working above the critical temperature), the temperature adjusted and held constant within 0.1°, and the system allowed to stand until constant pressure was observed. By successive removal of portions of substance, the isotherm was then traced downward as far as desired. A new isotherm was then deter-
from the product of one-half the volume of the spring by the upper fluid density. Each blank experiment gave the sum of both terms; the small term could be estimated from approximate values of spring volume and fluid density, thus determining the main term, from which (with the known bulb volume) the lower fluid density could be fixed accurately. The values so found were in satisfactory agreement with the meager data in
the literature. By working backward with the known volume of the bucket instead of the bulb, we could determine the proper correction for any adsorption experiment.

The result of this computation is the amount adsorbed according to definition C of the previous

1 shows an attempt to find a value of the pore volume which shall eliminate the discontinuity in the isotherm at saturation. The 30° isotherm for carbon dioxide is shown as calculated by definition A with various values of φ_{2}. (Direct rather than logarithmic pressures are here used.) The value

Fig. 3.-Carbon dioxide isosteres, definition A.
paper. To obtain the result by definition B (the accepted definition) it is necessary to apply a further buoyancy correction for the skeleton volume of the charcoal. This was taken as 0.472 cc. per g., as given by displacement with ether, the most penetrating liquid used, and in approximate agreement with the density of graphite. To produce definition A, a still further correction is needed to allow for the buoyancy of the fluid in the pore volume. From the experiments on saturation with benzene (assumed to have its normal liquid density) the pore volume is calculated to be 0.935 cc . per g . Applying the Polanyi treatment to the -40° isotherm measured with carbon dioxide, we obtain a maximum φ of 0.757 cc . (It should be noted that this result is entirely independent of any, even preliminary, assumption about either skeleton or pore volume, since all the resulting corrections are negligible at -40°.) If we assume that the volume of mercury displaced is the sum of pore and skeleton volumes, we get 1.118 cc . per g . This is certainly too large; evidently the mercury is prevented by surface tension from penetrating into a considerable volume of crevices which are nevertheless too large to count as part of the pore volume. Figure

Fig. 4.-Nitrous oxide isotherms, definition A.
A couple of examples will elucidate the method of calculation:

Substance	CO_{2}	$\mathrm{~N}_{2} \mathrm{O}$
Spring ext., mm.	4.45	-9.84
Equiv. wt., g.	0.808	-1.772
Press., atm.	7.21	54.4
Temp., upper layer, ${ }^{\circ} \mathrm{C}$.	25	25

Density	0.0126	0.180
Half spring vol., ce.	. 23	. 23
Corr., g.	003	. 041
Temp., lower layer, ${ }^{\circ} \mathrm{C}$.	25	0
Density	0.0126	958
Bucket vol., cc.	1.32	1.160
Corr., g.	0.017	1.111
Amit. ads., g.	. 828	-0.620
Charcoal, g.	2.330	1.685
$N^{\text {e }}$, g. per g.	0.355	-0.367
Skel. vol. corr.	. 006	. 452
$N^{\text {b }}$, g. per g.	. 361	. 085
Pore vol. corr.	. 010	. 767
N^{2}, g. per g.	. 371	. 852

The primary experimental data, N^{c}, and density of equilibrium fluid, δ, are reproduced in full in Tables I, II and III. In order to economize space, the derived quantities N^{b} and N^{a} are not tabulated, since they can readily be calculated, using for φ_{1} and φ_{2} either the values here suggested or others which the reader may prefer. Isotherms and isosteres for all points have been plotted, according to each definition. The resulting curves for definition A are shown in Figs. 2 to 7.

Table I

Carbon Dioxide Isotherms					
${ }^{\prime}$	δ	N^{0}	P	δ	N^{0}
	$=-100$		1.35	0.003	496
0.018	0.000	388	3.27	. 008	745
. 037	. 000	522	4.51	. 011	810
. 053	. 000	603	7.27	. 019	898
. 075	. 000	699	8.40	. 022	910
113	. 000	817	$T=-20.1^{\circ}$		
. 128	. 000	866	0.026	0.000	(i3)
$T=-77.8^{\circ}$. 116	. 000	101
0.195	0.000	310	483	. 001	195
. 103	. 000	389	1.343	. 004	333
. 1.58	. 001	468	3.713	. 009	556
258	. 001	603	6.583	. 016	685
401	. 001	717	11.76	. 029	803
.1955	. 002	859	15.11	. 039	842
. 845	. 003	913	$T=0^{\circ}$		
$T=-63.3^{\circ}$			0.022	0.000	25
0.116	0.000	272	. 087	. 000	48
1.066	. 003	742	. 384	. 001	102
2.028	. 005	870	2.16	. 004	278
2.963	. 008	961	5.76	. 011	450
3.480	. 009	1010	8.75	. 018	545
$T=-58.9^{\circ}$			14.90	. 032	655
			26.17	. 062	723
0.043	0.000	139	$T=25^{\circ}$		
. 197	. 001	300			
551	. 002	494	0.133	0.000	50
1.671	. 004	804	. 45	001	82
2.442	. 006	887	2.54	004	206
4.005	. 010	975	7.21	.013	355
$T=-40.0^{\circ}$			18.34	. 035	527
			31.00	. 065	607
0.033	0.000	84	37.80	. 085	621
. 101	. 010	132	54.88	. 159	593
74	1002	877	60.53	201	\%fo

${ }^{P} \quad T={ }^{\delta}$ \% 30°		No	P	$\dot{\text { ¢ }}$	No
			92.8	0.719	-106
2.08	0.004	175	101.8	. 750	-153
4.82	. 009	277	$T=35^{\circ}$		
16.95	. 033	490	0. 534	0.001	87
27.63	. 057	569	1.042	. 002	117
36.73	. 080	600	2.60	. 005	187
48.92	. 120	601	6.33	. 012	299
63.28	200	551	12.80	. 024	418
68.41	. 262	503	23.67	. 048	526
$T=30^{\circ}$			43.50	. 099	593
8.7	0.016	385	62.37	. 175	557
21.1	. 042	542	71.09	. 238	496
41.0	. 094	616	73.82	. 271	457
51.6	. 131	605	$T=50^{\circ}$		
66.2	. 231	538	1.535	0.003	112
70.9	. 320	438	4.807	. 008	209
71.6	. 624	55	8.22	. 013	278
74.5	. 668	- 24	18.76	. 033	402
76.5	. 684	- 45	26.62	. 048	467
80.2	. 706	- 59	41.61	. 083	523
86.4	. 732	-102	53.70	. 117	534
90.1	. 743	-135	64.95	. 155	496
94.4	. 755	-165	82.6	241	451
97.0	. 762	-177	88.3	282	395
101.5	. 774	-188	102.7	. 487	58
$T=33^{\circ}$			$T=100^{\circ}$		
8.9	0.017	381	2.06	0.003	75
21.9	. 043	538	7.59	. 012	153
39.8	087	610	21.46	. 034	265
53.0	. 132	603	37.70	. 060	336
68.5	. 229	518	60.61	. 100	383
73.5	. 302	457	85.2	. 154	396
78.0	. 566	69	92.7	. 172	392
80.9	. 634	12	100.0	191	:393
84.9	. 674	-35	103.0	. 108	376

Table II

Nitrous Oxide Isotherms					
P	¢	N°	P	δ	No
	$=-78$.		1.84	0.005	594
0.06	0.000	388	4.66	012	807
12	. 000	629	5.97	. 015	851
35	. 001	806	7.46	. 019	894
90	. 003	940	8.62	. 022	932
1.36	. 004	974	$T=-20.1^{\circ}$		
1.60	. 007	1028	0.16	0.001	119
$T=-58.5^{\circ}$			98	. 013	308
0.05	0.000	200	2.17	. 006	446
. 12	. 000	290	4.90	. 013	615
33	. 001	450	10.0	. 026	780
1.00	. 003	694	14.2	. 036	821
2.06	. 005	853	16.9	. 044	888
3.32	. 009	944	18.2	. 047	920
3.91	. 010	982	$T=0^{\circ}$		
4.28	. 011	1009	0.13	0.000	89
$T=-40.0{ }^{\circ}$			1.29	.003	260
0. 20	0.001	227	3.98	.009)	$4: 37$

Table II (Concluded)						p	δ	N^{0}	P	¢	No		
P	¢	$\mathrm{N}^{\text {e }}$	(δ	${ }^{\circ}$	$T=-20.1^{\circ}$			59.2	0.815	(i)		
8.9	0021	594	0.57	0.001	34	0.11	0.000	410	(63.7	.88:3	23		
14.5	035	691	1.28	. 001	62	1.17	004	676	70.2	. 954	-8.		
19.8	050	738	4.36	. 004	141	3.17	014	828	72.4	972	-107		
20.5	(1). 1	74.3	8.55	. 008	225	6.17	. 031	917	$T=25$				
28.4	075	809	14.27	. 021	292	17.0	. 107	980					
30.7	084	872	20.38	. 033	351	21.7	. 153	964	0.46	0.0012	273		
34.7	920	-365	29.70	. 054	409	21.9	. 155	952	2.88	012	95		
39.2	. 930	-359	39.42	. 080	444	23.8	. 178	947	9.83	043	647		
44.9	. 942	--355	52.0	. 115	454	25.4	199	927	18.91	088	708		
48.6	. 949	--362	58.5	. 134	452	28.5	248	862	27.40	136	717		
49.8	. 951	-367	67.4	. 160	429	$T=-10^{\circ}$			37.19	201	078		
53.1	. 950	-367	75.5	. 188	417		- 0.10		43.8	257	631		
54.4	.958	--367	83.5	227	398	0.49	${ }^{0.002}$	511	51.3	327	548		
$T=530^{\circ}$			90.3	285	352	1.00	. 005	605	51.7	331	565		
			95.3	. 374	308	2.02	. 009	708	57.8	. 395	517		
0.11	0.000	15	98.3	. 412	250	4.45	. 021	814	68.0	512	384		
1.17	. 002	88	100.5	429	203	9.30	. 047	903	73.0	. 570	310		
4.46	008	213	T- ${ }^{\text {c }} 100^{\circ}$			16.8	. 094	933	77.7	. 115	224		
8.48	017	314				23.3	. 152	914	89.0	. 743	110		
14.3	. 030	400	0.08	0.000	1	29.6	. 230	810					
21.1	046	468	. 90	. 000	28	32.8	. 280	798	$T=50^{\circ}$				
28.8	067	523	1.93	. 001	50	35.9	. 342	694	0.49	0.002	227		
34.2	083	552	4.34	. 003	90				2.96	. 011	404		
41.5	107	569	8.00	. 006	136	${ }_{0}^{T}=-5^{\circ}$			19.10	. 039	547		
49.1	138	565	12.56	. 011	180	. 99	. 004	542		. 080	612		
55.7	174	545	20.86	. 022	231	3.82	. 016	742	28.4	. 125	630		
60.0	208	526	28.3	. 033	272	8.43	. 039	840	38.1	. 179	616		
64.1	696	-161	38.4	. 051	306	17.3	. 094	885	46.3	. 232	588		
66.8	722	-171	49.6	. 073	333	26.0	. 168	870	53.5	.280.284	576562		
70.3	74.8	-184	57.9	. 090	345	34.0	. 271	771	54.1				
72.9	764	-196	60.0	. 094	349	38.0	. 346	704	62.5	. 343	518		
76.9	787	-179	67.8	. 107	345	45.6	. 580	392	$\begin{aligned} & 72.2 \\ & 79.1 \end{aligned}$. 416	450386		
81.1	805	-182	76.1	. 122	370	48.2	. 772	295		. 466			
84.5	816	-197	84.7	. 138	392	52.4	. 850	59	85.9	. 514	334271		
88.1	826	-202	89.0	. 150	380	57.2	. 927	- 42	93.7	. 566			
01.7	884	--213	92.2	. 161	381	61.9	. 979	- 79	$T=100^{\circ}$				
$T=60.3{ }^{\circ}$			95.7	. 173	377	65.6	1.011	-117					
			99.6	. 189	358	69.0	1.034	-147	0.54		179		
0.22	0.000	8	102.8	202	359	$T=0^{\circ}$			10.9	. 035	402		
Table III						0.67	0.003	470	20.2	. 068	476		
Sificon Tetrafluoride Isotherms						1.00	. 005	519	30.7	. 108	493		
P	δ	${ }^{\text {N }}$	P	δ	$N^{\text {c }}$	3.83	. 020	712	40.9	. 151	499		
	$=-100^{\circ}$		2.80	0.017	1248	8.70	. 040	811	52.6	. 207	489		
0.072	0.000	809	2.88	018	1250	16.7	. 085	858	57.7	. 233	486		
. 134	. 001	970	$T=-58.8^{\circ}$			26.0	. 153	835	98.5	. 237	494		
. 246	. 001	1105	0.16	0.001638		34.0	. 236	763	67.9	. 283	469		
. 355	. 012	1160	1.01	. 0016	916	39.7	. 317	682	88.6	. .381			
453	003	1189	2.01	. 011	1046	$\begin{aligned} & 43.6 \\ & 50.7 \end{aligned}$. 392	589			42.8 397		
. 555	004	1212	2.69	. 015	1091		. 587	352	$\begin{array}{r} 95.7 \\ 100.0 \end{array}$	$\begin{array}{r} .412 \\ .430 \end{array}$	$\begin{aligned} & 368 \\ & 351 \end{aligned}$		
645	004	1240	3.83	. 022	1136	$\begin{aligned} & 50.7 \\ & 55.1 \end{aligned}$. 723	171					

| 1.154 | .007 | 1274 | 7.34 | .047 | 1247 |
| ---: | :---: | ---: | ---: | ---: | ---: | ---: |
| T | $=-78.5^{\circ}$ | $T=-40.0^{\circ}$ | | | |
| 0.11 | 0.001 | 670 | 0.14 | 0.001 | 527 |
| .24 | 002 | 792 | 1.00 | .005 | 785 |
| .43 | 003 | 928 | 1.94 | .011 | 888 |
| .97 | 006 | 1088 | 3.27 | .018 | 964 |
| 1.41 | 009 | 1148 | 5.68 | .032 | 1039 |
| 1.96 | 012 | 1180 | 8.94 | .053 | 1068 |
| 2.43 | .015 | 1211 | 10.74 | .060 | 1066 |

The corresponding curves for the other definitions are not reproduced here, as their complicated shape renders them less suitable for indicating the degree of consistency among the individual results. They are very similar to Figs. 2 and 3 of the preceding paper; the characteristic overlapping of the isotherms near the critical point is beautifully displayed.

Test of Polanyi Theory

We could test the Polanyi theory only in the case of carbon dioxide, for which good equations of state are known. We used the method of Lowry and Olmstead, ${ }^{2}$ retaining, however, all terms in their eq. (15) because of the high outside gas density. We followed them in using observed

Table IV

Fundamental $\epsilon-\varphi$ Curve		
φ	$\boldsymbol{\epsilon}$	φ
0	1000	362
12	750	470
45	500	597
74	250	686
127	100	723
212	0	743

Fig. 5.-Nitrous oxide isosteres, definition A.
vapor pressures and coexisting densities, applying the necessary correction to ϵ in going from gas to liquid. For this reason the results are not quite comparable to those of the calculations in the preceding paper. The fundamental $\epsilon-\varphi$ curve is given in Table IV. The calculated isotherms are shown in Fig. 8 as black circles, the solid lines being the experimental isotherms, according to

Fig. 6.-Silicon tetrafluoride isotherms, definition A.
which the crosses show the Polanyi isosteres (points interpolated at equal round values of $N^{\text {a }}$ from the several calculated isotherms).

Discussion

The general picture of adsorption phenomena at high pressures, in the case of carbon dioxide, is evidently in quite good agreement with the predictions of the Polanyi theory. This is all the more striking in view of the magnitude and uncertainty of the corrections involved in reducing the experimental data to a form suitable for comparison, and the fact that these corrections were determined by independent means. Nevertheless, a number of small systematic discrepancies appear to exist. (The large discrepancy at -78.8° is doubtless due to an unwarranted extrapolation of the equation of state.) The amount adsorbed at 0° is a little smaller than the theory predicts. As this discrepancy also shows up on the isosteres (Fig. 3), and is not found in the work of other authors, it is probably assignable to experimental error. A discrepancy each of the three definitions. An additional comparison with experiment is shown in Fig. 6, in

[^1]in the opposite direction appears in the lower portions of the 30 and 100° isotherms. Here Fig. 3 shows that it is the observed, rather than the calculated, points which fall upon straight isosteres,
which seems good evidence in their favor. Finally, there is some divergence between the assumed pore volume, 0.800 cc . and the maximum adsorption space of the $\epsilon-\varphi$ curve, 0.744 cc .
the liquid is being approached, there is a small transition section in which the isotherm curves upward and becomes asymptotic to a vertical line so that no saturation capacity can be strictly

Fig. 7.-Silicon tetrafluoride isosteres, definition A.

The isosteres of carbon dioxide continue practically straight to temperatures well below the freezing point, indicating that in the specific heat of the adsorbed layer there is nothing in the nature of heat of fusion. This has been found true also of water ${ }^{3}$ and benzene. ${ }^{4}$ Carbon dioxide resembles water, and differs from benzene, in that the heat of adsorption is less than the heat of sublimation.
defined. It is customary (as in Polanyi calculations) to ignore this transition section, which seems to belong to a different phenomenon from the main one being studied, possibly being due to deposition of deep layers upon the outside surface of the pieces of adsorbent. The present experiments are not on a fine enough scale to show this phenomenon reliably, but the transition section is

Fig. 8.-Comparison of Polanyi values with experimental definition A isotherms: - calculated Polanyi values. The solid lines are experimental curves plotted by definitions A, B, C.

A matter of much interest is the manner in which the isotherms approach saturation. It has been shown ${ }^{4}$ by one of us that in the case of benzene vapor, if saturation is caused by reaching the vapor pressure of the solid, the isotherm terminates abruptly; but if the vapor pressure of
(3) A. S. Coolidge, This Journal, 49, 708 (1927).
(4) A. S. Coolidge, ibid., 48, 596 (1924).
clearly indicated in the nitrous oxide isotherms (Fig. 4). The irregularities in the curves near the critical point (especially in Fig. 1, which magnifies this region) may be due in part to this effect; another cause may be the difficulty of controlling the buoyancy correction where the fluid density fluctuates so rapidly. Figure 1 shows a tendency for $N^{\text {a }}$ to decrease slightly with further rise in
pressure, in contradiction to all expectations. This effect is probably spurious; the other substances do not show it.

While the isotherms of all three fluids are closely similar, the isosteres of silicon tetrafluoride deviate systematically from nearly straight lines, and almost seem to belong to portions of different sets, as though some permanent change had affected the adsorbent between the work at lower and at higher temperatures. Unfortunately this was not noticed until the apparatus had been
demolished and control experiments made impossible.

Summary

Adsorption equilibrium between charcoal and three gases is investigated with particular attention to the region near the critical point. The results are of the general nature anticipated. In the case of carbon dioxide, a successful application of the Polanyi theory has been made.
Cambridge, Mass. Received October 13, 1933
[Contribution from the Chemical Laboratory of Stanford University]
Hydrazoic Acid ${ }^{1}$

By Edward C. Franklin

Some of the methods for the preparation of hydrazoic acid and a majority of its reactions lead fairly definitely to the conclusion that it is an ammono nitric acid. Other methods of preparation and a few of its reactions are best explained on the assumption that it is a cyclic nitrous acid acid hydrazide, while certain minor considerations lend support to the view that it is a cyclic ammono hyponitrous acid.

The tautomeric properties of hydrazoic acid are discussed in another place. ${ }^{2}$ Here an account is given of experimental work which supports the view, first expressed by Turrentine, ${ }^{3}$ that hydrazoic acid may be regarded an ammono nitric acid.

Ammonolysis of Potassium Aquonitrate to Potassium Ammononitrate.-On the assumption that hydrazoic acid is an ammono nitric acid it was surmised that it might be possible to obtain the acid by the ammonolysis of aquo nitric acid say in accordance with the one or the other of the equations, $\mathrm{HONO}_{2}+2 \mathrm{NH}_{3}=\mathrm{HN}=\mathrm{N} \equiv \mathrm{N}+$ $3 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{KONO}_{2}+2 \mathrm{NH}_{3}=\mathrm{KN}=\mathrm{N} \equiv \mathrm{N}+$ $3 \mathrm{H}_{2} \mathrm{O}$. As a matter of fact no such reactions take place when either ammonium nitrate or potassium nitrate is heated in liquid ammonia solution. However, it was found that hydrazoic acid in the form of its potassium salt, together with potassium hydroxide, is formed when a liquid ammonia solution containing potassium aquonitrate and
(1) The laboratory work upon which this report is based was done by the author, Faw Yap Chuck. Thesis, Stanford University. 1925. J. B. Harker, Thesis. Stanford University. 1927. and E. S. Goodyear. Thesis, Stanford University, 1928.
(2) "The Nitrogen System of Compounds," American Chemical Society Monograph. 1934.
(3) Turrentine, This Journal, 34, 385 (1912).
potassium amide is heated for a time at temperatures around $80-90^{\circ}$. It was later found that higher temperatures up to 130 to 140° give better yields in a shorter time. At still higher temperatures, 200° or higher, liberal quantities of nitrogen are set free and the yield of potassium azide is lower. Representing the reaction involved by the equation $\mathrm{KONO}_{2}+3 \mathrm{KNH}_{2}=\mathrm{KN}=\mathrm{N} \equiv \mathrm{N}+$ $3 \mathrm{KOH}+\mathrm{NH}_{3}$, and assuming that the nitric acid nitrogen present in potassium aquonitrate persists as such in potassium azide, it will be clear that potassium aquonitrate undergoes ammonolysis to form a potassium ammononitrate.
A liquid anımonia solution containing potassium nitrate: and potassium amide was heated in a sealed glass tube al a temperature of 90° for three hours. After cooling, a crystalline precipitate, which was later identified as potassium hydroxide, was observed to have settled to the bottom of the tube. After opening the tip of the tube and allowing the liquid ammonia to evaporate away, the solid residue left behind was dissolved in water and the solution thus obtained was rendered slightly acid by means of dilute nitric acid. Addition of ferric chloride to a portion of this solution gave the brown coloration described by Curtins as a test for hydrazoic acid. On adding silver nitrate to the remainder of the solution, a white precipitate was formed which was filtered off, washed, and after dividing into small portions, dried in an exsiccator over sulfuric acid. The dried solid, when touched with a hot glass rod or when struck with a hammer, exploded with the powerful detonation characteristic of silver azide.

Following the above described procedure and using potassium amide in excess, Harker obtained yields of potassium azide as high as 75% of the amount calculated on the basis of the above equation. By using sodium nitrate and sodium amide

[^0]: (1) Booth atud Germann, J. Phys. Chem., 21, 81 (1917)

[^1]: (2) H. H. Lowry and P. S. Olmstead, J. Phys. Chem., 31, 1601 (1927).

